American University of Beirut
 STAT 230

Introduction to Probability and Random Variables
Summer 2009
quiz \# 2 - solution part 1

1. Suppose that $P(X=0)=1-P(X=1)$. If $E(X)=3 \operatorname{Var}(X)$, find $P(X=0)$.
X is a bernouilli random variable. $E(X)=p$ and $\operatorname{Var}(X)=p(1-p)$, by equating we find $p=2 / 3$; and hence $P(X=0)=1 / 3$.
2. The probability of winning a prize on the National lottery is 0.018 . Suppose that you decide to play one line per week. Let X be the number of weeks until you first win a prize. Find $P(X \geq 10)$.
$X \rightsquigarrow \mathcal{G}(0.018)$; the event $\{X \geq 10\}=\{$ event the first nine weeks are all loses $\}$, and hence $P(X \geq 10)=(0.982)^{9}=0.849$
3. A sample of 6 items is selected from a box containing 40 items of which 8 are defective. Find the expected number of defective items in the sample.
$E(X)=6 \cdot \frac{8}{40}=1.2$, wether the selection is with (binomial) or without (hypergeometric) replacement.
4. Suppose that the number of times during a year that an individual catches a cold can be modeled by a Poisson random variable with an expectation of 4 . Further suppose that a new drug based on Vitamin C reduces the expectation to 2 (but is still a Poisson distribution) for 80% of the population, but has no effect on the remaining 20% of the population. Find the probability that an individual taking the drug has 2 colds in a year.

Let $X \rightsquigarrow \mathcal{P}(2)$, and $Y \rightsquigarrow \mathcal{P}(4)$, and let $A=\{$ event an individual taking the drug has 2 colds in a year $\}$, then
$P(A)=0.8 P(X=2)+0.2 P(Y=2)=0.8 * 0.27+0.2 * 0.146=0.246 \quad$ (from Poisson table)
5. The probability of being dealt a full house in a hand of poker is approximately 0.0014 . Find the probability that, in a 10 hand of poker hands, you will be dealt at least one full house.

Let X be the number of full houses in the 10 hands; $X \rightsquigarrow b(10,0.0014)$.
$P(X \geq 1)=1-P(X=0)=1-(0.9986)^{10}=0.0139$
6. Two teams A and B play a series of games that ends when one of them has won 3 games. Suppose that each game played is, independently, won by team A with probability p. Let X be the number of games played. Find the pdf of X.

X	$\mapsto\{3,4,5\}$
k	$P(X=k)$
3	$p^{3}+(1-p)^{3}$
4	$3 p^{3}(1-p)+3 p(1-p)^{3}$
5	$6 p^{2}(1-p)^{2}$

7. Each game you play is a win with probability $2 / 3$. You plan to play 5 games, but if you win the fifth game, then you will keep on playing until you lose. Find the expected number of games that you play.

Let X be the number of games that you play until you lose starting form the fifth game, then X is geometric with $p=1 / 3$, and $E(X)=3$, and you already played 4 games, then the expected number of games played is $4+3=7$.
8. Let X be a negative binomial random variable $N B(r, p)$, and Y be a binomial random variable $b(n, p)$. Show that $P(X>n)=P(Y<r)$. $\{X>n\}=\{$ event that more than n trials are needed to have r success $\}=\{$ event that there are at most r success in n trials $\}=\{Y<r\}$

